HEAT AND MASS TRANSFER IN A BINARY LAMINAR
BOUNDARY LAYER WITH FREE CONVECTION ON A
VERTICAL POROUS SURFACE

P. M. Brdlik and I. S. Molchadskii UDC 536.244:536.25

An approximate analytical solution of heat and mass transfer in a binary laminar boundary
layer with free convection on a vertical surface is presented. The numerical solutionis com-
pared with an approximate analytical solution obtained by another method.

An approximate analytical solution is given in [1] for binary laminar free convection obtained by
Squire's method [2], according to which the integral equations of momentum and energy are integrated at
the same upper limit equal to the thickness of the thermal boundary layer with the introduction into the equa-
tion of motion of an additional function with the dimension of velocity which is a function of the Prandti num-~
ber. A different approach is used here: the equations of momentum and energy are integrated at different
upper limits, and the ratio of the thermal and diffusion boundary layers are assumed to be equal to Le™1/8,
In addition, the distribution of velocities, temperature, and concentration are assigned in a different form
than in [1].

The integral equations of the binary boundary layer for laminar free convection are written in the
following way [1]:

equation of momentum
h

Pe d—d; wdy = — 1, + j (0 — p=) gdy, 1)
g

R e

equation of energy

61‘ . o'l‘
d ¢ * .. Of
CoPe —— | u(t—te)dy =gy, + Py (ly —ta) + (Co, — o) | [is] = dy, @)
dx : Oy
0 0
equation of diffusion
4"
P d—x- 5 u(my — Myw) AY = f1p + Pl (Mg — M) 3)

0

The equations do not take into account compressibility and viscous dissipation, and the properties of
the mixture are assumed constant with the exception of a change of density due to the temperature and den-
sity in terms with Lift.

The porous wall is considered semipermeable: permeable for the active component (component 1)
and impermeable for the second component.
Then the transverse velocity v, is written
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Fig. 1. Heat transfer in the case of injection

of hydrogen (a), helium (), and carbon dioxide
(c) into laminar boundary layer of air (TW/T°°
=1-1; Ty, =366.4; dashed curve: numerical
calculation [3] (variable physical properties);
dots: numerical calculation [3] (constant physi-
cal parameters of mixture); 1) approximate
solutions [1]; 2) approximate solution of present
article): for a) Hy—air, Scy,/Preo =0.35-2.5; )
He—air, Sey,/Pr, =0.35-2.5; c¢) COp—air, Sc,
/Pro, =1.2~1.89.

The local specific heat flux
a7 (a, RMET \ .
g=—>x + (= ) . 5
(&) + (S5, ) ©
The concentration flux of component 1 (injected
gas)

i

jy=—pD (%’%) . (6)

According to a theoretical analysis [1,4], ther-
mal diffusion in the case of free convection can be
neglected in the overwhelming majority of applied
problems.

The mass relative concentration of injected gas
my =p1/Pmix 18 determined by

PR R,P,
my = = ,
Rleix RP iz Pr(1—Ry)
where
R = my (Ry — Ry) + R,.

A change of density over the thickness of the
boundary layer occurring due todifferences of temper-
atures and concentrations:

f—;—‘-’f— = — Byt —te) — By — ). (7)

The dimensionless concentration coefficient of volume
expansion has the form
M2

I [ dp M
ﬁm:-—( ) : - @
p \om,
tl+(Ml 1)’"‘

Equations (1)-(3) with consideration of (6) and (7) have
the form

4 5 - d
d—xj Wy = g (Te —Ty) Sedy g, jmdy—v(a:> , ©)
0
o P D am \ Y om o8
/ —(om Cp, = Cp, —
4 Budy = —a 6_6_) —D D(—ri) + P(——) 4t PDS - . —dy, (10)
dx ay lw 0 w l—mlw 6y w P 5 0./ a_l/
]
’ i 1—m om
2\ tudy = — 2= oD __) , 11
dx S‘ y 1_—rnlw P (6y w ( )
b
where
6= L—To m = My — My

The following distributions are used in calculating the integrals in (9)-(11):
u=ua + by -+ i+ diyp,
m = ay + byy - coff* 4- dotf®, 12)
T = ag + byy + cgp® + dyiP.
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In finding the velocity distribution it was taken into account that when y =0:

Ou ou
when y — «
u=20, o =0.
0y

This gives the following velocity distribution over the boundary layer thickness:

u:_‘ll.g__f_u_.i@,i), (13)

where

for injection (myy, > my,) and for Ty > Ty

9= g [By (Ty—T) B (Mg — mia)] 5
for suction (myw < my,) and for Ty, < Ty

Y=g B (To—Tu) + B o —my)] -

The concentration distribution has the form

- 2
My — My = (My,, — My ) [1——- ——:—(—33——- Y _3 _:Piﬁ’,_,_ =
4p+Pe, 3§, 4p 4 Pe, \8§,
1 {yg )3 3 Pe, y\3
—— e R 14
i 2 (6m i 2 494‘ peg (6m :i ( )
provided that when y =0
_ jrw (aml) Y ) (02’"1 ) . (15)
my = my,, —E . |2} = :
! e Pw (l" mlw) 6y ayz W
when y -~
am
my = g, ~5~‘ =0

Using Eqs. (4) and {6), we can write the transverse velocity Vo

D (a’—”l)

v = — % v (16)
¥ 1—my,,
and from (14)
,om,) ( 6p 1 )
) =y — M) | — = — . 17
(ay.w (o —me) ("5 (amn
With consideration of (16), (17)
Pe = vw‘sm — (mlw_mlw) i _6—5
£ D (I—my,) (4p + Pey)

from where after easy transformations we can determine

_ 3 1 Mye—my |
Peg:_Qp[l—Vlw?’F.WJ’ (18)
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where E =pw/péo. We see from (18) that Peg does not depend on x if my does not depend on x. The follow-
ing boundary conditions are used for obtaining the temperature distribution over the boundary layer thick-
ness:

wheny =0
ar Cpy — Cp, '—[ (aml) :\ (aT)
T=T, — S—Fpi—D | .
w vw (ay)w—l— Cp p ay » ay w
2 N
— (ﬂ) a,RMT,, oD ( Py ) , (19)
6y2 w Mlecp ayz w
when y — =
oT
= Twy T =V
T 3

Thus the temperature distribution has the form

T"Tf_:(l__g,_y_; +2 f_)_i Y (1___11)
& %

Ty—Tw Gi 5t 6t
A Ty (1_ i)z, 20)
® Tw — Tm 61 61 /
where
68, Cpy — Cp, = 6p ]
—— 4. L P 1 JELE N} mw——mm) —_— ], (21)
w=dbbe oo P [ T P e M) T e
o 6Pe 6t z
A= aTRsz my,. —m on) — 2 e ('—) . 22
. M1M2Cp ( h,u ' (49 + peg) 6m ( )

Integration of Eqs. (9)-(11) is done with consideration of distributions (13), (14), (20), which gives
8 =c,x /4 op=cgx'/4, 6., =cmx1/4, where the parametric constants c,, ¢i, ¢y, are found from the solu-
tions of systems of algebraic equations. The algebraic equations are from the seventh to the fifteenth order
which does not permit determining the parametric constants ¢, Ct, Cp, analytically. For an analytical
determination of ¢, ci, and cpy, we will assume that the ratio 64/6,, = Le~1/, Substituting the values of
jjw Into the expression of convective (without consideration of thermal phase transformations of chemical
reactions) heat flux on the wall, we obtain

2
qwz_k(a_T) _ GRMT, | p (%) ‘ @3)
6!/ w M1M2 6!/ w

The values of (@ T/By)W and (9,,1/0y)y, are determined from distributions (14), (20):

('gz) _8T-—T,) AT, @4)
3y / 8% 8t%

(%’g—‘); Gllmlm;nmlw , (25)
where

Substituting (24) and (25) into (23) and replacing 6m by (6tLe1/3), after easy transformations we obtain

o 6 AT — 2/3 -
= = 1 w + Du pl, (my,, — m,.,) Le u] 27
3 6tu|: -+ 6(T,—Tm) ply (my 1 . 27

The local mass-transfer coefficient . (with consideration of Stefan flux) is found from the expression for
the total mass flux of component 1

. 28
Wlw = Jiw T PulyMiy = Pum (Mg, — My w)- @8)

UsingEgs. (6), (16), and (25) and substituting them into (28), we obtain
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81,

%
b7 (1 — rm1y,,)

- 29)

From the solution of the integral equations of motion of a binary laminar boundary layer (9), which is gen-
eral for any relationship of boundary layers, we find the expression for the hydrodynamic, thermal, and
diffusion boundary layers:

1 1 ]
L 32 G+ Re, ™ {% [ &b (To —Tu) = ( 2 ”H)

x o 2 12
- 1/4
+gﬁm(mw-m1w>-‘—(i*311——5—12)]<4+Rewx)—1} , (30)
n\ 8 8 7
8. 114 ya 1L B R R L (31
25 = 32655 (4 + Rey) " {q, Lgﬂﬂw To— (575" |
. 1/4
+gﬁm<m1m—mlw)—l—(i—&l—izz) (4 -+ Rey) — 1} ,
n\8 8
) ) —1/4 il [ 1 1 i
B 3.9Gr A (4 Rey) ———| @By (Te —T)) —(— — ——H
- 3.2Gr 4 (4 - Rey,) Tl b ( L T )
‘ 1/4
g (Mg — 1) — (- — 31, -——5-12) (5+Rep) — 11" (32)
n\ 8 8 |

Substituting (31) into (27) and (32) into (29), we have:

_ T _
Nu, = 1.87Gri (4 + Re,0 " - [ 4 -——ATe 4 DL, (m,

%3 6(Tw‘Tm)
3 ! D ORI SN N (33)
—me) L% | [ b T =T (=5 #)
5 —1/4
+gﬁm(m1m~mlw>—‘—(i-—311~-—12)]<4+Rem)—1} ,
1 8 8
Ln 1 1
= @+ Re ) — | B (T —T,) —
th 1.87Grk ( * Rewx) (l“—mlw) {W ':gﬁt( w) s
1 1 1 /9 5 _ —1/4
X(3——*—12—1'1)’i—gﬁm(mw—'mlw)'?(hs‘—311_?12” (4+Rewx)_1} . (34)

The relation between the Sherwood and Nusselt numbers is determined by the following relationship:

i, _
Nt (1—m1w)[1+

LLe Py, i 35)

AT - 9/3,
Y+ Dupl, (my, — M) L
6(T, —Tu) + Dupl, (m, M) Le ”1}

The expression for determining the quantity o =6/6 for different cases of the relationship of the hydrodyna-
mic 6, mass-transfer 6,,,, and thermal 6, boundary layers are given in Table 1. The average values of the
Sherwood and Nusselt numbers are obtained by multiplying their iocal values by 4/3.

In Fig. la~c the approximate solution is compared with the numerical solution of Gill et al. [3]
and with the approximate analytical solution from [1]. The numerical calculation (3] was made for cases
when: a) the variation of the physical parameters of the mixture was taken into account; b) the parameters
of the mixture were assumed constant with the exception of a change of density of the mixture as a function
of temperature and concentration. The calculations were made for TW/TOo =1.1; T, =333°K. In [1] the
Dufour and Soret effects were taken into account; the numerical calculation [3] was made without consider-
ation of these effects. In the case of injection of hydrogen and helium the present approximate solution
gives a closer value to the numerical calculation than the solution in {1]: however, the divergence between
the two approximate solutions does not exceed 5%. The divergence is explained by the fact that the solution
in [1] was obtained under the condition of equality of the thickness of the dynamic and thermal boundary
layer. In the given solution the ratio §/6; =o is a function of the physical parameters of the components of
the mixture and concentration of active component 1 and is found from the appropriate equations. In the
case of injection of CO, the results practically coincide. The curves for CO, in Fig. 1lc are interrupted.
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This occurs owing to the fact that the lifting forces caused by grad m; act toward opposite sides (when Tw

/Too > 1). For

| — 0.2] < [By (Myyy — M) + By (Toy — T'0)1 << 0008

system of Egs. (1)-(3) does not have a solution, since unsteady motion and inversion of the boundary layer
occur in the boundary layer. For [(6m(m1w — Mye) +ﬁt(Tw —Tw)] < —0.2 it is necessary to change from
the solution of equations with the lower edge to the solution with the upper edge of the plate. Thus, the
approximate solutions obtained by Squire's method [1] (6 =6;) and in the present study 64/0 = Le-1/3)
give practically coinciding results. In addition, the differences in the distributions of velocity, tempera-
ture, and concentration adopted in [1] and in the present article do not have any noticeable effect on the

exit characteristics of the boundary layer.

B <2 H30m 39 xsD

2R

D
Bt
Bm y
Pe_=(v_06..)/D
Du'= (@, RMTW)/M, M,C_ (T, —Te)

Grk = (qXS[(ﬁt~(Too “TW) +ﬁm(m1°o - mlw)])/vz
Pr =v/a

Re = Vwé/v

Sec =y/D,

Shy =, x/D

Nuy, =ax/A

a

v

6

6m

Ot

Subscripts
refers to the injected gas;
refers to the plate surface;

refers to an impermeable surface;
refers to the local values.

o8 g =

refers to an infinite distance from the plate;

NOTATIONS

is the density;

is the velocity in direction x;

is the distance along surface;

is the distance perpendicular to surface;
is the tangential stress;

is the gravitational acceleration;

is the specific heat of mixture;:

is the temperature;

is the heat flux;

is the velocity in direction y;

is the mass flux;

is the mass concentration;

is the dimensionless thermal diffusion constant;
is the gas constant of mixture;

is the molecular weight of mixture;

is the diffusion coefficient;

is the temperature coefficient of expansion;
is the concentration coefficient of expansion;
is the Peclet number;

is the Dufour number:;

is the combined Grashof number;

is the Prandtl number;

is the Reynolds number;

is the Schmidt number;

is the Sherwood number;

is the Nusselt number;

is the thermal diffusivity;

is the kinematic viscosity,

is the hydrodynamic boundary layer;

is the concentration boundary layer;

is the temperature boundary layer.
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